XGBoost là viết tắt của Extreme Gradient Boosting. Đây là thuật toán state-of-the-art nhằm giải quyết bài toán supervised learning cho độ chính xác khá cao bên cạnh mô hình Deep learning như chúng ta từng tìm hiểu.
Nếu Deep learning chỉ nhận đầu vào là raw data dạng numerical (ta thường phải chuyển đổi sang n-vector trong không gian số thực) thì XGBoost nhận đầu vào là tabular datasets với mọi kích thước và dạng dữ liệu bao gồm cả categorical mà dạng dữ liệu này thường được tìm thấy nhiều hơn trong business model, đây là lý do đầu tiên tại sao các cá nhân tham gia Kaggle thường sử dụng.
Bên cạnh đó, XGboost có tốc độ huấn luyện nhanh, có khả năng scale để tính toán song song trên nhiều server, có thể tăng tốc bằng cách sử dụng GPU, nhờ vậy mà Big Data không phải là vấn đề của mô hình này. Vì thế, XGBoost thường được sử dụng và đã giành được nhiều chiến thắng trong các cuộc thi tại Kaggle.
Tiếp tục đọc “XGBoost: thuật toán giành chiến thắng tại nhiều cuộc thi Kaggle”