Làm việc với Spark DataFrames – Truy vấn nâng cao (Subqueries, Cube, Rollup)

spark_dataframe_cube

Tiếp theo bài Truy vấn cơ bản với Spark Dataframe, bài viết này tập trung sử dụng Spark-SQL để thực hiện các truy vấn SQL nâng cao hơn như truy vấn lồng và tổng hợp dữ liệu với Cube, Rollup. Lý do sử dụng SQL thay vì các hàm dựng sẵn của Dataframe là do tính dễ dùng. Ta đã quá quen thuộc với cú pháp và cách truy vấn sử dụng ngôn ngữ này.

Thông qua notebook, ta sẽ biết cách đặt truy vấn lồng tại các mệnh đề SELECT, FROM, WHERE như thế nào thông qua các ví dụ minh hoạ đơn giản. Sau đó, ta tiếp tục bước tổng hợp dữ liệu cho OLAP ra sao. Dữ liệu được phát sinh từ trang https://www.mockaroo.com/.

Download:

Advertisements

Hướng dẫn deploy Spark

spark-mesos

Việc deploy Spark là cần thiết đối với các tác vụ mang tính chu kỳ. Ví dụ, ta có thể tạo một CRON job để chương trình Spark có thể tự động tổng hợp dữ liệu cho chúng ta sau chu kỳ mỗi giờ, mỗi ngày hay mỗi tuần. spark-submit là một shell command được dùng để deploy ứng dụng Spark lên cluster. Nhờ vào cơ chế quản lý phân tán của Spark, ta không cần phải chỉnh sửa source code quá nhiều để có thể chuyển đổi từ standalone mode sang distributed mode.

Để hoàn tutorial này, bạn cần các phần mềm sau:

Tiếp tục đọc

Làm việc với Spark DataFrames – Truy vấn cơ bản

Spark DataFrames

Spark DataFrames

DataFrame là một kiểu dữ liệu collection phân tán, được tổ chức thành các cột được đặt tên. Về mặt khái niệm, nó tương đương với các bảng quan hệ (relational tables) đi kèm với các kỹ thuật tối ưu tính toán.

DataFrame có thể được xây dựng từ nhiều nguồn dữ liệu khác nhau như Hive table, các file dữ liệu có cấu trúc hay bán cấu trúc (csv, json), các hệ cơ sở dữ liệu phổ biến (MySQL, MongoDB, Cassandra), hoặc RDDs hiện hành. API này được thiết kế cho các ứng dụng Big Data và Data Science hiện đại. Kiểu dữ liệu này được lấy cảm hứng từ DataFrame trong Lập trình R và Pandas trong Python hứa hẹn mang lại hiệu suất tính toán cao hơn.

Spark DataFrames Performance

Spark DataFrames Performance

Trong bài viết này, tôi sẽ tiến hành thực nghiệm một vài truy vấn cơ bản để làm quen với kiểu dữ liệu DataFrames. Ở các bài viết sau, ta sẽ đi sâu hơn vào các truy vấn nâng cao và phức tạp hơn.

Tiếp tục đọc